Skip to content

BAAI: bge-m3

baai/bge-m3

Created Nov 18, 20258,192 context
$0.01/M input tokens$0/M output tokens

The bge-m3 embedding model encodes sentences, paragraphs, and long documents into a 1024-dimensional dense vector space, delivering high-quality semantic embeddings optimized for multilingual retrieval, semantic search, and large-context applications.

OpenRouterOpenRouter
© 2026 OpenRouter, Inc

Product

  • Chat
  • Rankings
  • Models
  • Providers
  • Pricing
  • Enterprise

Company

  • About
  • Announcements
  • CareersHiring
  • Partners
  • Privacy
  • Terms of Service
  • Support
  • State of AI

Developer

  • Documentation
  • API Reference
  • SDK
  • Status

Connect

  • Discord
  • GitHub
  • LinkedIn
  • X
  • YouTube

Recent activity on bge-m3

Total usage per day on OpenRouter

Prompt
162M
Completion
0
Reasoning
0

Prompt tokens measure input size. Reasoning tokens show internal thinking before a response. Completion tokens reflect total output length.