Skip to content
OpenRouterOpenRouter
© 2026 OpenRouter, Inc

Product

  • Chat
  • Rankings
  • Models
  • Providers
  • Pricing
  • Enterprise

Company

  • About
  • Announcements
  • CareersHiring
  • Partners
  • Privacy
  • Terms of Service
  • Support
  • State of AI

Developer

  • Documentation
  • API Reference
  • SDK
  • Status

Connect

  • Discord
  • GitHub
  • LinkedIn
  • X
  • YouTube
Favicon for intfloat

intfloat

Browse models from intfloat

3 models

Tokens processed on OpenRouter

  • Intfloat: E5-Large-v2E5-Large-v2
    1K tokens

    The e5-large-v2 embedding model maps English sentences, paragraphs, and documents into a 1024-dimensional dense vector space, delivering high-accuracy semantic embeddings optimized for retrieval, semantic search, reranking, and similarity-scoring tasks.

    by intfloat512 context$0.01/M input tokens$0/M output tokens
  • Intfloat: E5-Base-v2E5-Base-v2
    300 tokens

    The e5-base-v2 embedding model encodes English sentences and paragraphs into a 768-dimensional dense vector space, producing efficient and high-quality semantic embeddings optimized for tasks such as semantic search, similarity scoring, retrieval and clustering.

    by intfloat512 context$0.005/M input tokens$0/M output tokens
  • Intfloat: Multilingual-E5-LargeMultilingual-E5-Large
    716K tokens

    The multilingual-e5-large embedding model encodes sentences, paragraphs, and documents across over 90 languages into a 1024-dimensional dense vector space, delivering robust semantic embeddings optimized for multilingual retrieval, cross-language similarity, and large-scale data search.

    by intfloat512 context$0.01/M input tokens$0/M output tokens