
Browse models from Qwen
58 models
Tokens processed on OpenRouter
The Qwen3 Embedding model series is the latest proprietary model of the Qwen family, specifically designed for text embedding and ranking tasks. This series inherits the exceptional multilingual capabilities, long-text understanding, and reasoning skills of its foundational model. The Qwen3 Embedding series represents significant advancements in multiple text embedding and ranking tasks, including text retrieval, code retrieval, text classification, text clustering, and bitext mining.
Qwen3-VL-8B-Thinking is the reasoning-optimized variant of the Qwen3-VL-8B multimodal model, designed for advanced visual and textual reasoning across complex scenes, documents, and temporal sequences. It integrates enhanced multimodal alignment and long-context processing (native 256K, expandable to 1M tokens) for tasks such as scientific visual analysis, causal inference, and mathematical reasoning over image or video inputs. Compared to the Instruct edition, the Thinking version introduces deeper visual-language fusion and deliberate reasoning pathways that improve performance on long-chain logic tasks, STEM problem-solving, and multi-step video understanding. It achieves stronger temporal grounding via Interleaved-MRoPE and timestamp-aware embeddings, while maintaining robust OCR, multilingual comprehension, and text generation on par with large text-only LLMs.
Qwen3-Max is an updated release built on the Qwen3 series, offering major improvements in reasoning, instruction following, multilingual support, and long-tail knowledge coverage compared to the January 2025 version. It delivers higher accuracy in math, coding, logic, and science tasks, follows complex instructions in Chinese and English more reliably, reduces hallucinations, and produces higher-quality responses for open-ended Q&A, writing, and conversation. The model supports over 100 languages with stronger translation and commonsense reasoning, and is optimized for retrieval-augmented generation (RAG) and tool calling, though it does not include a dedicated “thinking” mode.
Qwen3 Coder Plus is Alibaba's proprietary version of the Open Source Qwen3 Coder 480B A35B. It is a powerful coding agent model specializing in autonomous programming via tool calling and environment interaction, combining coding proficiency with versatile general-purpose abilities.
Qwen3 Coder Flash is Alibaba's fast and cost efficient version of their proprietary Qwen3 Coder Plus. It is a powerful coding agent model specializing in autonomous programming via tool calling and environment interaction, combining coding proficiency with versatile general-purpose abilities.
Qwen3-0.6B is a lightweight, 0.6 billion parameter language model in the Qwen3 series, offering support for both general-purpose dialogue and structured reasoning through a dual-mode (thinking/non-thinking) architecture. Despite its small size, it supports long contexts up to 32,768 tokens and provides multilingual, tool-use, and instruction-following capabilities.
Qwen3-1.7B is a compact, 1.7 billion parameter dense language model from the Qwen3 series, featuring dual-mode operation for both efficient dialogue (non-thinking) and advanced reasoning (thinking). Despite its small size, it supports 32,768-token contexts and delivers strong multilingual, instruction-following, and agentic capabilities, including tool use and structured output.
Qwen2.5 VL 3B is a multimodal LLM from the Qwen Team with the following key enhancements: - SoTA understanding of images of various resolution & ratio: Qwen2.5-VL achieves state-of-the-art performance on visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, MTVQA, etc. - Agent that can operate your mobiles, robots, etc.: with the abilities of complex reasoning and decision making, Qwen2.5-VL can be integrated with devices like mobile phones, robots, etc., for automatic operation based on visual environment and text instructions. - Multilingual Support: to serve global users, besides English and Chinese, Qwen2.5-VL now supports the understanding of texts in different languages inside images, including most European languages, Japanese, Korean, Arabic, Vietnamese, etc. For more details, see this blog post and GitHub repo. Usage of this model is subject to Tongyi Qianwen LICENSE AGREEMENT.
Qwen2.5 32B Instruct is the instruction-tuned variant of the latest Qwen large language model series. It provides enhanced instruction-following capabilities, improved proficiency in coding and mathematical reasoning, and robust handling of structured data and outputs such as JSON. It supports long-context processing up to 128K tokens and multilingual tasks across 29+ languages. The model has 32.5 billion parameters, 64 layers, and utilizes an advanced transformer architecture with RoPE, SwiGLU, RMSNorm, and Attention QKV bias. For more details, please refer to the Qwen2.5 Blog .
Qwen's Enhanced Large Visual Language Model. Significantly upgraded for detailed recognition capabilities and text recognition abilities, supporting ultra-high pixel resolutions up to millions of pixels and extreme aspect ratios for image input. It delivers significant performance across a broad range of visual tasks.
Qwen-Max, based on Qwen2.5, provides the best inference performance among Qwen models, especially for complex multi-step tasks. It's a large-scale MoE model that has been pretrained on over 20 trillion tokens and further post-trained with curated Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF) methodologies. The parameter count is unknown.
QwQ-32B-Preview is an experimental research model focused on AI reasoning capabilities developed by the Qwen Team. As a preview release, it demonstrates promising analytical abilities while having several important limitations: 1. Language Mixing and Code-Switching: The model may mix languages or switch between them unexpectedly, affecting response clarity. 2. Recursive Reasoning Loops: The model may enter circular reasoning patterns, leading to lengthy responses without a conclusive answer. 3. Safety and Ethical Considerations: The model requires enhanced safety measures to ensure reliable and secure performance, and users should exercise caution when deploying it. 4. Performance and Benchmark Limitations: The model excels in math and coding but has room for improvement in other areas, such as common sense reasoning and nuanced language understanding.
Qwen2 7B is a transformer-based model that excels in language understanding, multilingual capabilities, coding, mathematics, and reasoning. It features SwiGLU activation, attention QKV bias, and group query attention. It is pretrained on extensive data with supervised finetuning and direct preference optimization. For more details, see this blog post and GitHub repo. Usage of this model is subject to Tongyi Qianwen LICENSE AGREEMENT.
Qwen2 72B is a transformer-based model that excels in language understanding, multilingual capabilities, coding, mathematics, and reasoning. It features SwiGLU activation, attention QKV bias, and group query attention. It is pretrained on extensive data with supervised finetuning and direct preference optimization. For more details, see this blog post and GitHub repo. Usage of this model is subject to Tongyi Qianwen LICENSE AGREEMENT.
Qwen1.5 4B is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: - Significant performance improvement in human preference for chat models - Multilingual support of both base and chat models - Stable support of 32K context length for models of all sizes For more details, see this blog post and GitHub repo. Usage of this model is subject to Tongyi Qianwen LICENSE AGREEMENT.
Qwen1.5 7B is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: - Significant performance improvement in human preference for chat models - Multilingual support of both base and chat models - Stable support of 32K context length for models of all sizes For more details, see this blog post and GitHub repo. Usage of this model is subject to Tongyi Qianwen LICENSE AGREEMENT.
Qwen1.5 14B is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: - Significant performance improvement in human preference for chat models - Multilingual support of both base and chat models - Stable support of 32K context length for models of all sizes For more details, see this blog post and GitHub repo. Usage of this model is subject to Tongyi Qianwen LICENSE AGREEMENT.
Qwen1.5 32B is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: - Significant performance improvement in human preference for chat models - Multilingual support of both base and chat models - Stable support of 32K context length for models of all sizes For more details, see this blog post and GitHub repo. Usage of this model is subject to Tongyi Qianwen LICENSE AGREEMENT.
Qwen1.5 72B is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: - Significant performance improvement in human preference for chat models - Multilingual support of both base and chat models - Stable support of 32K context length for models of all sizes For more details, see this blog post and GitHub repo. Usage of this model is subject to Tongyi Qianwen LICENSE AGREEMENT.
Qwen1.5 110B is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: - Significant performance improvement in human preference for chat models - Multilingual support of both base and chat models - Stable support of 32K context length for models of all sizes For more details, see this blog post and GitHub repo. Usage of this model is subject to Tongyi Qianwen LICENSE AGREEMENT.